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NATTORAT:, ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORARDUM

LIFT, DRAG, AND PTTCHING MOMENT OF LOW—ASPECT-RATIO
WINGS AT SUBSONIC AND SUPERSONIC SPEEDS — PLANE
TRIANGULAR WING OF ASPECT RATTO 4% WITH
3—PERCENT-THICK ROUNDED NOSE SECTION

By Johm C. Heltmeyer and Ronald C. Hightower
SUMMARY

A wing-body combination having a plsne trilangular wing of aspect
ratio 4 and 3~percent—thick rounded nose sectlons in streamwise planes
has been investigated at both subsonlic and supersonic Mach numbers. The
lift, drag, and pltching momsent of the model are presented for Mach
numbers from 0.60 to 0.92 and From 1.20 to 1.70 at Reynolds numbers of
2,91 million and 4,15 million.

INTRODUCTION

A research program is In progrese at the Ames Asrocnautical Iabora—
tory to ascertaln experlmentally at subsonic and supersonic Mach numbers
the characterlstics of wings of lnterest In the design of high-speed
Fighter alrplanes. The effects of varistions in plan form, twlst, camber,
and thickness are belng Investigated. The results of this program to -
date are presented in references 1 to 9.

This report is one of a serles pertaining to thils program and pre—
gents results of a wing-bhody camblnation having a plane triangular wing
of aspect ratlio 4. The model 1s the same as that used in reference 9,
exsept that the 3—percent—thick blconvex ssctlion of reference 9 was modi-—
fled., This modification consisted of replacing the portlion of the
biconvex section, forward of the midchord location, with an elliptical
profile, The tangent to the alrfoll sectlon at the 50—percent—chord
position was horlzomtal. Filgure 1 shows plctorlally the extent of this
modification.
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As in references 1 to 9, the data herein are presented without

analysis to expedite publication.
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NOTATION
wing span
b /2
fo cz dy
mean aerodynasmic chord . /
2
Joo cay

local wing chord

length of body including portion removed to accommodate sting
lift-drag ratio |
maximum 1lift—drag ratlo

Mach number

fres—stream dynamlc pressure

Reynolds number based on the mean aerodynamic chord
radius of body

maximm body radius

total wing srea, including area formed by extending leading and
tralling edges to plane of symmetry

longltudinal distance from nose of body
distance perpendicular to plane bf aymmetry

angle of attack of body axls, degrees

drag coefficlent <d—l-'§->
q

A
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cr, 11£4 coefficlent (%)
q

pitching-moment coefficlent referred to quarter point of mean

aerodynamic chord pite q_&SE t)

slope of the 1lift curve measured at zero 1ift, per degree

dCr,
da,
dCp
-d._CE slope of the pltching-moment curve measured at zero 1lift

APPARATUS

Wind Tunnel and Equipment

The experimental Investlgatlon was conducted In the Ames
6— by 6~foot supersonic wind tunnel. Im this wind tunnel, the Mach
mumber can be varied continuously and the shagnation pressure can be
regulated to maintain a glven test Reynolds number., The alr is dried
to prevent formation of condensatlon shocks., Further Information on
this wind tummel ls presented in reference 10.

The model was sting mounted in the tunmnel, the diameter of the
sting being about 93 percent of the dlameter of the body base. The
Pltch plane of the model support was horlzontal, A k—inch—diameter,
four—component, strain-gage balance, described In reference 11l, enclossd
wilthin the body of the model, was used to measure the aerodynamic forces
and moments,

Model

A plan and a front view of the model and certalin model dimensions
are glven in figure 2. Other Important geometric characteristics of the
model are as follows:

Wing
A.Epect I'a'bio L[] . . . L [ . o o - - . Ll . L - - - . . o e - l{'
Taper ratio . . . . . c ¢ e s e« & s & = & .« o 0]

Alrfoll section (streamwise) . 3—percent—thick mod.ified. biconvex
Total area, S, SqUATe £t . . + ¢ « o « o o o » « » o « « 2,425

QO ¥
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Wing

Mean aerodynamic chord, ¢, feet . . . . e e e e e . « « 1,038
Dihedral, dogrees . « o« o o o o 4 o s o o o o s ¢ o o o o 0
Camber . u o « ¢ s « o« o o s s ¢ 5. o ¢« o« ¢ s o » o« « « « o None
Twliat, degrees . . ¢ ¢« ¢ ¢ ¢ ¢ ¢ v« ¢ ¢ s o o o = « « o & o 0
Incidence, degrees . “ e o e e . e o s & o 4 4 0
Distance, wing—chord plane to body axis, feet o s s s 8 s u 0
Body
Fineness ratio (based upon length 1; fig, 2) . . . . . . . 12.5
Cross~section ghape . « . ¢« ¢« ¢ « o'« e« ¢« o ¢« « s o Circular
Meximum cross—sectlonal area, square feet e s e 4 s s . . 01235
Retlo of maximum cross—sectlonal ares to wing area ., . . 0.0509

The wing contour of the pregent model was obtained by covering the solid
steel wing of reference 9 with a tin bismuth alloy. The body spar was
steel and was covered with aluminum to form the body contours. The
surfaces of the wing and body were polished amooth.

TESTS AND PROCETURE
Range of Test Variables

The characteristics of the model (as a function of angle of attack)
were investigated for a range of Mach numbers from 0.60 to 0.92 and from
1.20 to 1.70. The data were obtalned at Beynolds numbers of 2,51 million
and 4,15 million,

Reductlion of Data

The test data have been reduced to standard NACA coefficlent form.
Factors which could affect the accuracy of these results, together with
the correctlons applled, are dlscussed In the following paragraphs,

Tunnel-~wall interference.— Corrections to the subsonic results for
the induced effects of the tumnel walls resulting from 1ift on the model
were made accordling to the methods of reference 12. The numerical values
of these corrections (which were added to the uncorrected data) were:

= 0.592 Cr,
ACp = 0.01035 Cr2

No correctlons were made to the pltching-moment coefficlents.
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The effects of constrictlon of the flow at subsonic speeds by the
tunnel walls were taken Into account by the method of reference 13.
Thisg correctlon was calculated for conditlons at zero angle of attack
and was applied throughout the angle—of—attack range. At a Mach number
of 0,90, thls correction amounted to a 2-percent Increase In the Mach
number and 1n the dynamic pressure over that determined from a callibra—
tion of the wind tumnel wlthout a model in place.

For the tests at supersonlc speeds, the reflectlon from the tunnel
walls of the Mach wave origlnating at the nose of the body dild not cross
the model. No correctlions were required, therefore, for tunnel—mll

effects.

Stream variations.— Teats at subsonlc speeds in the 6— by 6-Ffoot

supersonic wind tummel of the present symmetrical model in both the
normsl and inverted positiors have Indicated a stream lnclinstiom of
-0.05° and a stream curvature capable of producing a pitching-moment
coefficient of -0.004 at zerc lift. No corrections were made to the
data of the present report for the effect of thess stream lrregular—
1tles. No measurements have been made of the stream curvature In the
yaw plane. AL subsonic speeds, the longltudlngl variation of statlc
Presgure In the region of the model 1s not known accurately at present,
but a prelimlnary survey has indlcated that 1t is less than 2 percent of
the dynamlc pressure. No correctlion for thls effect was made.

A survey of the air stream in the 6~ by 6~Ffoot wind tunnel gt super—
sonic speeds (reference 10) has shown a stream curvature only in the yaw
plane of the model. The effects of this curvature on the measured char—
acteristics of the present model are not mnown but are believed to be
small as Judged by the results of reference 1k, The survey of refer—
ence 10 also indicated that there 1s a statlc—pressure varlation in the
test sectlon of sufficlent magnitude to affect the drag results. A
correctlion was added to the measured drag coefficient, therefore, to
account for the longltudinal buoyancy caused by thls static—pressure
varlation. Thils correction varled from as much as —0.0008 at a Mach
number of 1.30 to 0.0006 &t s Mach number of 1.70.

Support Interference.— At subsonic speeds, the effects of support
interference on the aercdynamic chargoteristics of the model are not
known., For the presgent tallless model, it 1s believed that such effects
consisted primarily of a change in the pressure at the base of the model.
In an effort to correet at least partiglly for this support interfer—
ence, the base pressure was measured and the drag data were adjusted to
correspond to a base pressure equal to the statlc pressure of the free
gtream,

At supersonioc speeds, the effects of support interference of a
body—sting configuration simllar to that of the present model are shown

-
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by reference 15 to be confined to a change in base pressure. The pre—
viously mentioned adjustment of the drag for base pressure, therefore,
wag applied at supersonic speeds,

RESULTS

The resulta are presented 1n this report without analysls in order
to expedite publication., The vaerlation of 1lift coefficlent with angle
of attack and the variations of pltching-moment coefflclent, drag coef—
ficient, and 1lift—drag ratio with 1lift coefficient at Mach numbers from
0.60 to 1.70 end at Reynolds numbers of 2,91 million and 4.15 miliion
are shown In figure 3.

The results presented in figure 3 far a Reynolds number of k.15
million have been summarized in figure 4 to show some Important param—
eters as functions of Mach number. Also presented in figure 4, for
comparison purposes, are the data of reference 9 at a Reynolds number of
4.15 million. The slope parameters in this figure have been measured at
zero 1lift.

Ames Aeronsautlcal Laboratory,
National Advisory Commlttee for Aercnautics,
Moffett Field, Califormia.
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\- Airfoil section of the model of present report
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L Airfoil section of the model of reference 9
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Figure I.- Comparison of the airfoil section of the present report with that of reference 9.
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Equation of fusslage radii
L=f1mr1— 25)%
f=/-t T’./%

All dimensions shown in inches
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Frgure 2.-Front and plan views of the model,
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Figure 3.~Ths variation of the aerodynamic characieristics with kift coefficlent at various Mach numbers,
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Figure 4.- Summary of aerodynamic characteristics as a function of
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